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Characteristic Impedance and Field Patterns of the
Shielded Microstrip on a Ferrite Substrate

DAVID T. YEH axp DONALD M. BOLLE, SENIOR MEMBER, IEEE

Abstract—The dispersion relation, field patterns, and current
density at the interface of a shielded microstrip on ferrite substrate
while operating at remanence is obtained and the characteristic
impedance of such a structure is presented.

In a paper by Minor and Bolle [1], the dispersion relation of a
shielded microstrip on a ferrite substrate transversly magnetized in
the plane of the substrate was analyzed. The method of solution
used was to construct an appropriate modal expansion in each of
the two media. The boundary conditions at the interface were then
expressed in terms of two coupled integral equations which were
subsequently solved by the method of moments. An estimate of
0.5-percent aceuracy using a matrix as small as 5 X 5 was reported.

In this short paper, we obtain the characteristic impedance based
on the theory of [1]. The earlier computer program was modified
80 as to yield numerical results for the characteristic impedance.

The model of the shielded microstrip is shown in Fig. 1. The wave-
guide walls and the strip are all presumed perfectly conducting. The
strip is infinitely thin, and each of the two regions may be either
dielectric- or ferrite-loaded. We define the characteristic impedance
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Fig. 1. The shielded microstrip.

of such a structure by (see Fig. 1)
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Eiy, is the y component of the electric field in region II. J./7(x)
is the axial electric current density. Both of these quantities may be
calculated directly once the propagation factor 8 is obtained for a
time dependence of the form exp [jwt]. The path of integration
taken for the voltage integral is at the midpoint of the strip with
x = (w; + w2) /2. The current I is the total axial current in the
direction of propagation.

To ensure the correctness and establish the accuracy of the pro-
gram and of the formulation, comparison with previous results
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was made. The physical dimensions of the structure are shown in
the inset of Fig. 2. The characteristic impedance was computed for
various dielectrics loading region II and with W/H (ratio of strip
width to substrate height) as a parameter. The results obtained
were compared to those obtained by Bryant and Weiss [2]. The
figure shows that the disagreement is well within 3 percent for all
cases except when W/H < 0.5. Although the error for narrow strips
is much higher (57 percent), this may well be due in part to the
inaccuracy incurred in transferring values from the graph of [2].
Also, it should be noted that Bryant and Weiss [2] considered
unshielded mijcrostrip line in contrast to the shielded microstrip
line investigated here. '

Having established such agreement for the isotropically loaded
structure, computations were extended to the anisotropically loaded
structure. The physical dimensions of the structure are shown in
Fig. 3 along with the w—g diagram. For the meaning of the search
parameters consult [17]. Data are presented for the ferrite operating
at remanence, i.e., Hg, = 0.0 Oe.

Since the applied dec magnetic field is zero, the ferrite introduces
substantial anjsotropy at low frequencies, i.e., at 1 GHz, x = 0.0,
but «k = —6.1614, where x and « are the diagonal and off-diagonal
components of the magnetic susceptibility tensor. The result of such
anisotropy is readily observed from the dispersion diagram. A 10—
20-percent difference in the values of the propagation constant
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Fig. 2. Characteristic impedance of the shielded microstrip (W = strip

width, H = substrate thickness).
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Fig. 8. Dispersion relation diagram for a shielded microstrip with

ferrite substrate.
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is seen for opposing direction of propagation with |g| larger for
8 > 0thanitisfor g < 0.

As we were interested primarily in modes with zero cutoff, only
the dispersion for low frequencies was investigated. The appearance
of a slow wave [|8/ko | > (12.7)12] in this guide is not unexpected
since it also occurs in the stripless ferrite-loaded waveguide [3].
Also, in that the energy of this mode is predominantly concentrated
in the region between the strip and the plate, it appears to be a
perturbation of the TMq, i.e., TEM, mode for the parallel-plane
guide. The phase velocity of this mode is the free-space value modi-
fied by the dielectric constant. As is observed, this value is asymptot-
ically approached as w — 0. The results obtained agree in general
with those obtained by Minor and Bolle [1] except in that their
use of high dc magnetic fields, which facilitated comparison with
previously published isotropic substrate data, resulted in near
symmetry of the dispersion relation plot at low frequencies. The
previously observed two modes of propagation [4] exhibiting no
cutoff were again obtained from the dispersion relation for each
direction of propagation.

The characteristic impedance of such a structure was then com-
puted for the ferrite at remanence with f = 1 GHz. The result is
displayed in Fig. 4. The increase of characteristic impedance with
decreasing W/H ratio is to be expected since similar behavior is
observed for the dielectrically loaded structure.

To obtain further insight into the behavior of the electromagnetic
waves in such a structure, the field patterns and the current density
at the interface were obtained.

The field patterns at f = 1 GHz for each of the modes exhibiting
no cutoff are shown in Fig. 5(a), (b), (¢), (d). The field patterns
were obtained using a cancomp plotter. The absolute magnitude
and the direction of the transverse electric and magnetic field in~-
tensities were obtained at the points of a grid structure in the trans-
verse plane and are represented by the length and direction of the
short lines. These field quantities were suitably scaled to fit the
plotter format. It should be noted that only the field patterns near
the stripline are shown. The boundaries shown in Fig. 5 do not
therefore coincide with the perfectly conducting boundaries. The
dots indicate the location of the microstrip edges inside the wave-
guide.
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Fig. 4. Characteristic impedance of the ferrite-loaded shielded micro-
strip (Hae = 0 Oe). (W = strip width, H = substrate thickness.)
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Fig. 5. (a) Transverse flelds for mode 1. (b) Transverse flelds for
mode 2. (c) Transverse fields for mode —1. (d) Transverse fields for

mode —2.

Hdc= 0.0 Oe

The general characteristic of the field patterns are much as would
be expected. The magnetic lines of forces encircle the strip, while
electric lines of forces direct themselves towards (or away from) the
strip. Both magnetic and electric fields are concentrated near the
edges of the strip. In modes +2 and —2, both magnetic and electric
fields are highly concentrated in the ferrite substrate directly under
the strip. Since the field patterns are obtained for the low-frequency
range (1 GHz), a quasi-TEM mode is expected and the magnitudes
of the longitudinal field components were not significant.
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Fig 6. (a) The total electric current at y = d for mode 1. (b) The
total electric current at ¥ = d for mhode 2. (¢) The total electric cur-
rent at ¥ = d for mode -1. (d) The total electric curreht at ¥y = d
for mode —2.

In Fig. 6(a), (b), (¢), (d), the instantaneous electric current at
the interface for each mode are plotted for f = 1 GHz. As mentioned
in [17, these graphs should not be expected to be as accurate as the
eigenvalues (dispersion relation plot, Fig. 3). Since the total (top
of strip plus bottom of strip) axial current is constructed from the
eigenvector, it is by definition identically zero outside the strip. The
total transverse current is constructed from the Fourier series over
the entire waveguide width. One should especially note the dif-
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ference in magnitude between the minimum of J . and the maximum
of J.Z (note the different scale for J.F and J.F).

The program as written also allows inclusion of lossy media by
only a slight modification since ¢, x, and x are already written as
complex variables. Limitation in time and money restricted the
number of results that could be obtained.
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Capacitance of a Circular Disk for Applications in
Microwave Integrated Circuits

SURESH R. BORKAR, MEMBER, IEEE, AND
RICHARD F. H. YANG, FELLOW, IEEE

Abstract—The quasi-static solution for a circular disk separated
from a ground plane by a dielectric substrate is studied using the
dual integral equation approach. A simple expression for equivalent
capacitance is determined.

INTRODUCTION

The analytical study of disk resonators is of considerable impor-
tance for applications in integrated circuits. In order to determine the
resonant frequency of such structures, it becomes necessary to
obtain the value of capacitance [1], [2]. Recently, the determina-
tion of capacitance for a circular disk resonator was accomplished
using computer calculations based on a numerical approach in
spectral domain [17, [8] Although capacitance was determined
readily, it appears that the determination of actual surface charge
densities and potential functions may warrant inversion of matrices
of large orders. -

The main complication in such a class of problems arises because of
the mixed boundary conditions involved. Various approaches have
been put forth in the past to circumvent this complexity. Rikitake
[4] used the relaxation method for studying electromagnetic induc-
tion in a plane sheet with a circular aperture. For a two-dimensional
problem in Cartesian coordinates, use was made of conformal
mapping [5]. A method using multiple partial images has been
reported [6]. The capacitance of disk resonator in free space has also

Manuscript received March 13, 1974; revised March 20, 1975,

8. R. Borkar was with the Department of Electrical Engineering,
Illinois Institute of Technology, Chicago, Ill. He is now with the Zenith
Radio Corp., Chicago, I11. 60639.

R. F. H. Yang was with the Department of Electrical Engineering,
Illinois Institute of Technology, Chicago, Ill. He is now a Consultant
in electromagnetics at 10021 West 146th St., Orland Park, Ill, 60462,

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JULY 1975

been obtained [7]. In this short paper, a convenient method for an
accurate solution to the disk resonator is developed using dual
integral equations [8]. A major advantage lies in the fact that
capacitance, charge densities, and field functions are determined in
terms of a quickly convergent series.

FORMULATION

Consider the geometry shown in Fig. 1 for a circular disk resonator
of radius ‘‘a,”’ separated from a ground plane by a dielectric material.
Without loss of generality, the radius is assumed to be unity. The
disk is charged to potential V,. The potential functions are considered
to be ¢;(r,2) and ¢:(r2) for z > d and 0 < z < d, respectively.
Because of circular symmetry, the Hankel transforms of these
functions may be defined as

Fra(esz) = / w¢1,z(r,z)-fo(ar)r dr. 1)
[

Using the boundary conditions @:(a,0) = 0 and @i, + ») =0,
the following expressions for potentials are obtained:

P2(e,z) = A(a) sinh oz,
B1(az) = B(a) exp [—alz — d)],

The unknowns 4 (e) and B(«) are to be determined from the follow-
ing boundary conditions. At the interface z = d,

o1(r,d) = ¢a(r,d). (4)

0<z<d (2)
z2>d. (3)

In particular,

di(rd) = ¢a(nd) = Vo, 0<r<1 (5)
Alsoatz = d
8¢ (r,d) __ Oge(rd)
92 €r 9z = 0, r > 1. (6)
Clearly from (4)
A(a) sinh ad = B(a) ()]

and using (6) and (7), one can obtain the following dual integral
equations

® o~ sinh ad
. . = 0
o Lsinh ad + & cosh ad] fle) Jolar)de = Vo, <r<1 @&
and
/ F(e)Jolar)da =0, r>1 ©
[
where

f(a) = oA (a)[sinh ad + ¢ cosh ad].

(10)
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Fig. 1. Geometry of the problem.



